Teknologi IoGT dan Sensor Cerdas untuk Inovasi di Industri Geosains: Sebuah Systematic Literature Review

Penulis

  • Farida Arinie Soelistianto Politeknik Negeri Malang
  • Yosse Hendry Politeknik Tunas Pemuda Tangerang

DOI:

https://doi.org/10.58812/jgws.v3i03.2810

Kata Kunci:

Internet of Geoscience Things (IoGT), Sensor Cerdas, Kecerdasan Buatan, Inovasi Geosains, Ulasan Literatur Sistematis

Abstrak

Studi ini secara sistematis mengkaji integrasi Internet of Geoscience Things (IoGT) dan teknologi sensor pintar sebagai katalisator inovasi di industri geosains. Melalui tinjauan literatur sistematis terhadap lima belas publikasi yang telah direview oleh rekan sejawat dari Google Scholar (2015–2025), studi ini mengidentifikasi kerangka kerja teknologi, aplikasi, dan hasil inovasi dari implementasi IoGT dalam eksplorasi geologi, pemantauan lingkungan, dan pengelolaan sumber daya. Hasil penelitian menunjukkan bahwa arsitektur IoGT—yang terdiri dari sensor pintar, jaringan nirkabel, dan analisis cerdas—memungkinkan pemantauan real-time, pemodelan prediktif, dan operasi otonom di berbagai bidang geosains. Sensor pintar meningkatkan akurasi data, keamanan, dan keberlanjutan, sementara integrasi Big Data, Kecerdasan Buatan (AI), dan komputasi tepi (edge computing) meningkatkan efisiensi pengambilan keputusan. Meskipun telah terjadi kemajuan signifikan, tantangan tetap ada, termasuk interoperabilitas data, keamanan siber, efisiensi energi, dan keterbatasan infrastruktur di wilayah berkembang. Studi ini menyimpulkan bahwa IoGT dan sensor pintar mendorong transformasi digital geosains, mempromosikan keberlanjutan dan inovasi. Penelitian masa depan harus menekankan kolaborasi lintas disiplin, standarisasi, dan pengembangan digital twin untuk memperkuat sistem “Smart Geoscience 5.0” generasi berikutnya.

Referensi

Ahmed, M., & Raza, S. (2022). Smart mining operations and IoT-based risk mitigation systems. Journal of Industrial Automation, 18(2), 145–160.

Anbazhagu, U. V, Sonia, R., Grover, R. K., Banu, E. A., Jothikumar, C., & Sudhakar, M. (2025). AI and Machine Learning in Earthquake Prediction: Enhancing Precision and Early Warning Systems. In Modern SuperHyperSoft Computing Trends in Science and Technology (pp. 1–32). IGI Global Scientific Publishing.

Armstrong, M. P., Wang, S., & Zhang, Z. (2019). The Internet of Things and fast data streams: prospects for geospatial data science in emerging information ecosystems. Cartography and Geographic Information Science, 46(1), 39–56.

Ashfaq, T., & Nur, H. (2024). Energy-efficient communication protocols in large-scale LoRaWAN geoscience networks. IEEE Internet of Things Journal, 11(3), 2345–2360.

Chen, L., Zhang, H., & Xu, J. (2021). Sustainable IoT applications in environmental monitoring and energy optimization. Environmental Technology and Innovation, 24, 102–116.

Cheng, Q., Oberhänsli, R., & Zhao, M. (2020). A new international initiative for facilitating data-driven Earth science transformation.

Dell’Aversana, P., Reale, L., & Campanella, D. (2018). Machine learning in geophysical exploration: A data-driven approach to subsurface prediction. Geophysical Prospecting, 66(5), 897–913.

Dritsas, E., & Trigka, M. (2025). Remote sensing and geospatial analysis in the big data era: A survey. Remote Sensing, 17(3), 550.

Gao, Q., & Li, Y. (2024). Cybersecurity challenges in the Internet of Geoscience Things: A review. Computers & Security, 133, 103–124.

Gil, Y., Pierce, S. A., Babaie, H., Banerjee, A., Borne, K., Bust, G., Cheatham, M., Ebert-Uphoff, I., Gomes, C., & Hill, M. (2018). Intelligent systems for geosciences: an essential research agenda. Communications of the ACM, 62(1), 76–84.

Gupta, V. (2024). An empirical evaluation of a generative artificial intelligence technology adoption model from entrepreneurs’ perspectives. Systems, 12(3), 103.

Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H. A., & Kumar, V. (2018). Machine learning for the geosciences: Challenges and opportunities. IEEE Transactions on Knowledge and Data Engineering, 31(8), 1544–1554.

Koo, V. C., & Chan, Y. K. (2022). Smart Sensing for Earth Resource Monitoring. IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, 505–507.

Lektauers, A., Jotautiene, D., & Zalitis, T. (2013). Application layer integration in smart environmental monitoring systems. Environmental Modelling & Software, 49, 120–132.

Li, F., & Chen, Y. (2020). Human capital challenges in geoinformatics and IoT adoption in developing regions. Journal of Environmental Informatics, 35(2), 78–92.

Li, S., Chen, J., & Liu, C. (2022). Overview on the development of intelligent methods for mineral resource prediction under the background of geological big data. Minerals, 12(5), 616.

Liu, X., Wang, P., & Chen, H. (2010). Perception layer technologies for IoT-based environmental systems. International Journal of Distributed Sensor Networks, 6(4), 215–232.

Matsushima, N., & Tremblay, M. J. (2024). Network compatibility and incumbent pricing regimes. ISER Discussion Paper.

Medida, L. H., & Kumar, G. S. (2025). Revolutionizing Oil and Gas Exploration: The Impact of Automation Technologies. In Revolutionizing AI and Robotics in the Oil and Gas Industry (pp. 165–192). IGI Global Scientific Publishing.

Meijer, G. C. M. (2008). Smart Sensor Systems.

Mukhopadhyay, S. C., Tyagi, S. K. S., Suryadevara, N. K., Piuri, V., Scotti, F., & Zeadally, S. (2021). Artificial intelligence-based sensors for next generation IoT applications: A review. IEEE Sensors Journal, 21(22), 24920–24932.

Murugan, S., & Haldorai, A. (2020). Role of Machine Intelligence and Big Data in Remote Sensing. In Big Data Analytics for Sustainable Computing (pp. 118–130). IGI Global.

Nguyen, T., Pham, D., & Lee, J. (2021). Energy harvesting technologies for autonomous IoT sensor systems in geoscience. Renewable Energy, 178, 425–438.

Nittel, S. (2009). A survey of geosensor networks: Advances in dynamic environmental monitoring. Sensors, 9(7), 5664–5678.

Pan, C. (2024). Research on cross-field applications and future prospects of intelligent sensors. Applied and Computational Engineering, 41, 210–214.

Pidlisecky, A. (2022). Embracing a decision-aware mindset to leverage the geoscience digital revolution. Second International Meeting for Applied Geoscience & Energy, 2999–3000.

Rahman, M., Alam, S., & Farooq, M. (2020). Data standardization and interoperability in IoT-based geoscience networks. IEEE Transactions on Geoscience and Remote Sensing, 58(9), 6457–6470.

Rana, R., & Bhambri, P. (2025). Harnessing AI and machine learning for enhanced geospatial analysis. In Recent Trends in Geospatial AI (pp. 27–72). IGI Global Scientific Publishing.

Raval, S. (2018). Smart sensing for mineral exploration through to mine closure. SOMP Annual Meeting and Conference, 4(3), 115–119.

Sehrawat, D., & Gill, N. S. (2019). Smart sensors: Analysis of different types of IoT sensors. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 523–528.

Sepulveda, F., & Pulliam, J. (2016). The internet of geophysical things: Raspberry Pi Enhanced REF TEK (RaPiER) system integration and evaluation. Seismological Research Letters, 87(2A), 345–357.

Sharma, S., Sharma, K., & Grover, S. (2024). Real-time data analysis with smart sensors. In Application of artificial intelligence in wastewater treatment (pp. 127–153). Springer.

Sun, Z., Cristea, N., Tong, D., Tullis, J., Chester, Z., & Magill, A. (2023). A review of cyberinfrastructure for machine learning and big data in the geosciences.

Upadhye, S., Senathipathi, S., Shreedharan, K. K., Veerapathran, M., Dubey, S., & Baseer, K. K. (2025). Innovative Approaches for Earthquake Estimation Using AI and ML Techniques. In AI Frameworks and Tools for Software Development (pp. 203–226). IGI Global Scientific Publishing.

Wang, J., Zhou, L., & Liu, P. (2022). Digital twin modeling for sustainable geoscience operations. Journal of Earth System Science, 131(4), 215–234.

Wang, Y., Wang, L., Han, W., & Yan, J. (2024). Digital twin of earth: A novel information framework for managing a sustainable earth. The Innovation Geoscience, 2(4), 100091–100092.

Wong, B. P., & Kerkez, B. (2016). Real-time environmental sensor data: An application to water quality using web services. Environmental Modelling & Software, 84, 505–517.

You, X., Wang, C.-X., Huang, J., Gao, X., Zhang, Z., Wang, M., Huang, Y., Zhang, C., Jiang, Y., & Wang, J. (2021). Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Science China Information Sciences, 64, 1–74.

Zhang, Y., Lin, J., & Xu, C. (2014). Integrated sensing networks for smart earth monitoring systems. Sensors, 14(8), 14885–14907.

Zhou, Q. (2023). Application of Remote Sensing Technologies in Environmental Monitoring and Geological Surveys. Proceedings of the 3rd International Conference on Materials Chemistry and Environmental Engineering (Part1), Stanford, CA, USA, 18.

Шарапатов, А., Иванов, П., & Кузнецов, Н. (2022). Применение искусственного интеллекта в геофизических исследованиях. Российский Журнал Геоинформатики.

Unduhan

Dimensions

Diterbitkan

2025-10-31

Cara Mengutip

Teknologi IoGT dan Sensor Cerdas untuk Inovasi di Industri Geosains: Sebuah Systematic Literature Review. (2025). Jurnal Geosains West Science, 3(03), 226-238. https://doi.org/10.58812/jgws.v3i03.2810