Skrining Komprehensif Status Gizi dan Komposisi Tubuh pada Populasi Dewasa di Kelurahan Jelambar
DOI:
https://doi.org/10.58812/jpws.v4i12.2958Kata Kunci:
Antropometri, Komposisi Tubuh, Indeks Massa Tubuh, Sindrom Metabolik, GiziAbstrak
Sindrom metabolik merupakan masalah kesehatan global dengan prevalensi yang terus meningkat, dipicu oleh gaya hidup modern, urbanisasi, dan pola makan tinggi kalori. Di Indonesia, prevalensi sindrom metabolik mencapai sekitar 21,66%, dengan tingkat tertinggi tercatat di daerah perkotaan seperti Jakarta. Hal ini menyoroti pentingnya deteksi dini status gizi dan komposisi tubuh sebagai langkah pencegahan strategis terhadap gangguan metabolik. Kegiatan pelayanan masyarakat ini bertujuan untuk melakukan skrining komprehensif terhadap status gizi dan komposisi tubuh di kalangan dewasa di Kecamatan Jelambar, Jakarta Barat. Penilaian meliputi pengukuran Indeks Massa Tubuh (BMI), lingkar tubuh, ketebalan lipatan kulit, dan analisis komposisi tubuh menggunakan alat analisis komposisi tubuh. Sebanyak 46 peserta berusia 20–63 tahun secara sukarela mengikuti program ini. Rata-rata BMI adalah 24,24 ± 4,25 kg/m², diklasifikasikan sebagai normal hingga kelebihan berat badan, dengan rata-rata lingkar pinggang 80,79 ± 11,47 cm yang menunjukkan kecenderungan obesitas sentral. Perempuan menunjukkan persentase lemak subkutan yang lebih tinggi dibandingkan laki-laki, sementara laki-laki memiliki massa otot skeletal yang lebih besar. Variasi terkait usia menunjukkan penumpukan lemak yang meningkat dan penurunan massa otot secara bertahap selama masa dewasa tengah. Temuan ini menyoroti pentingnya pemantauan rutin status gizi dan komposisi tubuh sebagai pendekatan promotif-preventif untuk mengurangi risiko sindrom metabolik dan mendukung peningkatan kesehatan komunitas perkotaan.
Referensi
Astrup, A., Dyerberg, J., Selleck, M., & Stender, S. (2008). Nutrition transition and its relationship to the development of obesity and related chronic diseases. Obesity Reviews, 9(s1), 48–52. https://doi.org/10.1111/j.1467-789X.2007.00438.x
Azam, M., Sakinah, L. F., Kartasurya, M. I., Fibriana, A. I., Minuljo, T. T., & Aljunid, S. M. (2023). Prevalence and determinants of obesity among individuals with diabetes in Indonesia. F1000Research, 11, 1063. https://doi.org/10.12688/f1000research.125549.4
Berg, J., Nauman, J., & Wisløff, U. (2024). Normative values for body composition in 22,191 healthy Norwegian adults 20–99 years: The HUNT4 study. Progress in Cardiovascular Diseases, 85, 82–92. https://doi.org/10.1016/j.pcad.2024.06.002
Briand, M., Raffin, J., Gonzalez-Bautista, E., Ritz, P., Abellan Van Kan, G., Pillard, F., Faruch-Bilfeld, M., Guyonnet, S., Dray, C., Vellas, B., de Souto Barreto, P., & Rolland, Y. (2024). Body composition and aging: cross-sectional results from the INSPIRE study in people 20 to 93 years old. GeroScience, 47(1), 863–875. https://doi.org/10.1007/s11357-024-01245-6
da Cunha de Sá-Caputo, D., Sonza, A., Coelho-Oliveira, A. C., Pessanha-Freitas, J., Reis, A. S., Francisca-Santos, A., dos Anjos, E. M., Paineiras-Domingos, L. L., de Rezende Bessa Guerra, T., da Silva Franco, A., Xavier, V. L., Barbosa e Silva, C. J., Moura-Fernandes, M. C., Mendonça, V. A., Rodrigues Lacerda, A. C., da Rocha Pinheiro Mulder, A., Seixas, A., Sartorio, A., Taiar, R., & Bernardo-Filho, M. (2021). Evaluation of the Relationships between Simple Anthropometric Measures and Bioelectrical Impedance Assessment Variables with Multivariate Linear Regression Models to Estimate Body Composition and Fat Distribution in Adults: Preliminary Results. Biology, 10(11), 1209. https://doi.org/10.3390/biology10111209
Dissen, A., Uchmanowicz, I., & Czapla, M. (2025). Obesity: A call to action. Advances in Clinical and Experimental Medicine, 34(4), 473–477. https://doi.org/10.17219/acem/203269
González-Salazar, L. E., Serralde-Zúñiga, A. E., Flores-López, A., Díaz-Sánchez, J. P., Medina-Vera, I., Pichardo-Ontiveros, E., Guizar-Heredia, R., Hernández-Gómez, K. G., Vigil-Martínez, A., Arteaga-Sánchez, L., Avila-Nava, A., Vázquez-Manjarrez, N., Torres, N., Tovar, A. R., & Guevara-Cruz, M. (2023). Prevalence of adiposity-based chronic disease and its association with anthropometric and clinical indices: a cross-sectional study. British Journal of Nutrition, 130(1), 93–102. https://doi.org/10.1017/S0007114522002963
Harmadha, W. S. P., Muharram, F. R., Gaspar, R. S., Azimuth, Z., Sulistya, H. A., Firmansyah, F., Multazam, C. E. C. Z., Harits, M., & Putra, R. M. (2023). Explaining the increase of incidence and mortality from cardiovascular disease in Indonesia: A global burden of disease study analysis (2000–2019). PLOS ONE, 18(12), e0294128. https://doi.org/10.1371/journal.pone.0294128
Herningtyas, E. H., & Ng, T. S. (2019). Prevalence and distribution of metabolic syndrome and its components among provinces and ethnic groups in Indonesia. BMC Public Health, 19(1), 377. https://doi.org/10.1186/s12889-019-6711-7
JafariNasabian, P., Inglis, J. E., Reilly, W., Kelly, O. J., & Ilich, J. Z. (2017). Aging human body: changes in bone, muscle and body fat with consequent changes in nutrient intake. Journal of Endocrinology, 234(1), R37–R51. https://doi.org/10.1530/JOE-16-0603
Jamali, Z., Ayoobi, F., Jalali, Z., Bidaki, R., Lotfi, M. A., Esmaeili-Nadimi, A., & Khalili, P. (2024). Metabolic syndrome: a population-based study of prevalence and risk factors. Scientific Reports, 14(1), 3987. https://doi.org/10.1038/s41598-024-54367-4
Koceva, A., Herman, R., Janez, A., Rakusa, M., & Jensterle, M. (2024). Sex- and Gender-Related Differences in Obesity: From Pathophysiological Mechanisms to Clinical Implications. International Journal of Molecular Sciences, 25(13), 7342. https://doi.org/10.3390/ijms25137342
Kohir, D. S., Murhan, A., & Sulastri, S. (2024). Skrining Faktor Risiko Obesitas Usia Produktif. Jurnal Wacana Kesehatan, 9(2), 97. https://doi.org/10.52822/jwk.v9i2.673
Lampignano, L., Zupo, R., Donghia, R., Guerra, V., Castellana, F., Murro, I., Di Noia, C., Sardone, R., Giannelli, G., & De Pergola, G. (2020). Cross-sectional relationship among different anthropometric parameters and cardio-metabolic risk factors in a cohort of patients with overweight or obesity. PLOS ONE, 15(11), e0241841. https://doi.org/10.1371/journal.pone.0241841
Noubiap, J. J., Nansseu, J. R., Lontchi-Yimagou, E., Nkeck, J. R., Nyaga, U. F., Ngouo, A. T., Tounouga, D. N., Tianyi, F.-L., Foka, A. J., Ndoadoumgue, A. L., & Bigna, J. J. (2022). Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Research and Clinical Practice, 188, 109924. https://doi.org/10.1016/j.diabres.2022.109924
Park, J., Byun, Y., & Kim, S. (2025). Predictive Diagnostic Power of Anthropometric Indicators for Metabolic Syndrome: A Comparative Study in Korean Adults. Journal of Clinical Medicine, 14(2), 448. https://doi.org/10.3390/jcm14020448
Rössner, S. (2002). Obesity: the disease of the twenty-first century. International Journal of Obesity, 26(S4), S2–S4. https://doi.org/10.1038/sj.ijo.0802209
Sahoo, J. P., Mukherjee, J. J., Lee, K. O., & Khoo, C. M. (2024). Epidemiology of metabolic syndrome in South and South-East Asia. In Metabolic Syndrome (pp. 73–83). Elsevier. https://doi.org/10.1016/B978-0-323-85732-1.00007-4
Sato, S., & Demura, S. (2009). Regional Subcutaneous Fat Characteristics Stratified by Sex, Age, and Obesity, and Their Relationships with Total and Visceral Fat in a Japanese Population. Journal of PHYSIOLOGICAL ANTHROPOLOGY, 28(5), 231–238. https://doi.org/10.2114/jpa2.28.231
Schorr, M., Dichtel, L. E., Gerweck, A. V., Valera, R. D., Torriani, M., Miller, K. K., & Bredella, M. A. (2018). Sex differences in body composition and association with cardiometabolic risk. Biology of Sex Differences, 9(1), 28. https://doi.org/10.1186/s13293-018-0189-3
Wall‐Scheffler, C. (2024). Women have stronger legs and other side‐effects of human body proportions. American Journal of Human Biology, 36(5). https://doi.org/10.1002/ajhb.24034
Yang, M., Zhang, Y., Zhao, W., Ge, M., Sun, X., Zhang, G., & Dong, B. (2023). Individual and combined associations of body mass index and waist circumference with components of metabolic syndrome among multiethnic middle-aged and older adults: A cross-sectional study. Frontiers in Endocrinology, 14. https://doi.org/10.3389/fendo.2023.1078331
Zhang, Y., Li, Y., Peila, R., Wang, T., Xue, X., Kaplan, R. C., Dannenberg, A. J., Qi, Q., & Rohan, T. E. (2024). Associations of Lifestyle and Genetic Risks with Obesity and Related Chronic Diseases in the UK Biobank: A Prospective Cohort Study. The American Journal of Clinical Nutrition, 119(6), 1514–1522. https://doi.org/10.1016/j.ajcnut.2024.04.025
Unduhan
Dimensions
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Alexander Halim Santoso, Bryan Anna Wijaya, Valentino Gilbert Lumintang, Paulus Gegana Thery Dewanto

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
















