Visualisasi Jaringan Pengetahuan Penelitian E-Learning Menggunakan VOSviewer
DOI:
https://doi.org/10.58812/jpdws.v4i01.3163Kata Kunci:
E-learning, Bibliometrik, VOSviewer, Visualisasi Jaringan Pengetahuan, Pembelajaran DigitalAbstrak
Perkembangan pesat teknologi digital dan kebutuhan pembelajaran jarak jauh telah mendorong meningkatnya penelitian mengenai e-learning dalam berbagai konteks pendidikan. Namun, tingginya volume dan keragaman publikasi menyebabkan perlunya pemetaan sistematis untuk memahami struktur pengetahuan, tren penelitian, serta pola kolaborasi ilmiah dalam bidang ini. Studi ini bertujuan untuk memvisualisasikan dan menganalisis jaringan pengetahuan penelitian e-learning menggunakan pendekatan bibliometrik berbasis VOSviewer. Data bibliografis dikumpulkan dari basis data Scopus dan dianalisis melalui teknik co-occurrence kata kunci, co-authorship, afiliasi institusi, serta kolaborasi antarnegara. Hasil analisis menunjukkan bahwa e-learning merupakan konsep sentral yang paling dominan dan terhubung erat dengan tema pendidikan tinggi, pengajaran, dan transformasi digital. Visualisasi temporal mengindikasikan pergeseran fokus riset dari respons pembelajaran darurat selama pandemi COVID-19 menuju integrasi teknologi canggih seperti kecerdasan buatan, mobile learning, dan teknologi imersif. Meskipun demikian, pola kolaborasi penulis, institusi, dan negara masih relatif terfragmentasi, sehingga menunjukkan peluang besar untuk penguatan jejaring riset internasional. Secara keseluruhan, studi ini memberikan gambaran komprehensif mengenai struktur intelektual dan arah perkembangan penelitian e-learning, serta menawarkan dasar konseptual bagi pengembangan agenda riset dan kebijakan pembelajaran digital di masa depan.
Referensi
Abuhassna, H., Yahaya, N., Zakaria, M., Zaid, N. M., Samah, N. A., Awae, F., Nee, C. K., & Alsharif, A. H. (2023). Trends on using the technology acceptance model (TAM) for online learning: a bibliometric and content analysis. International Journal of Information and Education Technology, 13(1), 131–142.
Agarwal, S., Agarwal, B., & Gupta, R. (2022). Chatbots and virtual assistants: a bibliometric analysis. Library Hi Tech, 40(4), 1013–1030.
Aria, M., & Cuccurullo, C. (2017). A brief introduction to bibliometrix. Journal of Informetrics, 11(4), 959–975.
Aristovnik, A., Karampelas, K., Umek, L., & Ravšelj, D. (2023). Impact of the COVID-19 pandemic on online learning in higher education: a bibliometric analysis. Frontiers in Education, 8, 1225834.
Chin, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 37(2), 109–138.
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296.
Fitriani, A., Rosidah, R., & Zafrullah, Z. (2023). Biblioshiny: Implementation of Artificial Intelligence in Education (1976-2023). Journal of Technology Global, 1(01 SE-Articles), 11–25.
Gamage, S. H. P. W., Ayres, J. R., & Behrend, M. B. (2022). A systematic review on trends in using Moodle for teaching and learning. International Journal of STEM Education, 9(1), 9.
Goksu, I. (2021). Bibliometric mapping of mobile learning. Telematics and Informatics, 56, 101491.
Hmelo-Silver, C. E., & Chinn, C. A. (2015). Collaborative learning. In Handbook of educational psychology (pp. 363–377). Routledge.
Kaur, A., Bhatia, M., & Stea, G. (2022). A survey of smart classroom literature. Education Sciences, 12(2), 86.
Lalkaka, R. (2002). Technology business incubators to help build an innovation-based economy. Journal of Change Management, 3(2), 167–176. https://doi.org/10.1080/714042533
Martins, J., Gonçalves, R., & Branco, F. (2024). A bibliometric analysis and visualization of e-learning adoption using VOSviewer. Universal Access in the Information Society, 23(3), 1177–1191.
Nadi-Ravandi, S., & Batooli, Z. (2022). Gamification in education: A scientometric, content and co-occurrence analysis of systematic review and meta-analysis articles. Education and Information Technologies, 27(7), 10207–10238.
Prahani, B., Rizki, I., Jatmiko, B., Suprapto, N., & Tan, A. (2022). Artificial intelligence in education research during the last ten years: A review and bibliometric study. International Journal of Emerging Technologies in Learning (IJET), 17(8), 169–188.
Sari, N. T. P., & Kusumawati, A. (2022). Literature Review : The Efforts To Strengthening of Micro, Small and Medium-Sized Enterprises (MSME) in Indonesia. Asian Journal of Management, Entrepreneurship and Social Science, 2(01 SE-Articles), 98–115.
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
Zhang, L., Carter Jr, R. A., Qian, X., Yang, S., Rujimora, J., & Wen, S. (2022). Academia’s responses to crisis: A bibliometric analysis of literature on online learning in higher education during COVID‐19. British Journal of Educational Technology, 53(3), 620–646.
Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429–472.
Unduhan
Dimensions
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2026 Loso Judijanto

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
















